

Digitale Signalverarbeitung

Eine Einführung mit Demonstrationsbeispielen und Programm-CD

Vogel Buchverlag

Professor Dipl.Ing. Helmut Roderer, geboren 1936 in Würzburg, studierte Regelungstechnik und technische Elektronik an der Technischen Universität Darmstadt. Ab 1964 arbeitete er in der Industrie, hauptsächlich bei der Dornier AG. Seit 1973 lehrt er an der Hochschule für angewandte Wissenschaften, Fachhochschule Würzburg-Schweinfurt, das Fach Prozessdatenverarbeitung im Studiengang Informationstechnik.

Dr.-Ing. Alfred Pecher, geboren 1964 in Reutlingen, studierte Informationstechnik an der Fachhochschule Würzburg-Schweinfurt und Allgemeine Elektrotechnik an der Friedrich Alexander Universität Erlangen. Er promovierte neben seiner beruflichen Tätigkeit an der Technischen Universität Ilmenau auf dem Gebiet der Signalverarbeitung im menschlichen Gehirn. Seit 2000 arbeitet er, zuletzt in leitender Funktion, bei der Schaeffler KG in Herzogenaurach und gibt nebenher Vorlesungen in seinem Fachgebiet der Signal- und Systemtheorie.

MATLAB und Simulink sind eingetragene Warenzeichen der Firma The MathWorks Inc.

Weitere Informationen: www.vogel-buchverlag.de

ISBN 978-3-8343-3115-1

1. Auflage. 2010

Alle Rechte, auch der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Hiervon sind die in §§53, 54 UrhG ausdrücklich genannten Ausnahmefälle nicht berührt.

Printed in Germany

Copyright 2010 by Vogel Business Media GmbH & Co. KG, Würzburg

Vorwort

Dieses Werk entstand aus Vorlesungen an der Hochschule für angewandte Wissenschaften, Fachhochschule Würzburg-Schweinfurt, zum Fachgebiet Prozessdatenverarbeitung.

In diesem Fachbuch wird hauptsächlich auf die Theorie determinierter Signale eingegangen. Aber auch die wesentlichen Eigenschaften stochastischer Signale und ihre technische Generierung werden besprochen.

Zusätzlich findet neben der Signaltheorie und deren Verarbeitung die Beschreibung und der Entwurf von Systemen ausführlichen Raum.

Gemäß ihrer praktischen Relevanz stehen dabei die zeitdiskreten Signale und Systeme im Vordergrund. Ihre zeitkontinuierlichen Entsprechungen werden nur insoweit behandelt, wie sie für das Verständnis und den Entwurf der zeitdiskreten Signale und Systeme benötigt werden.

Gängige Verfahren wie beispielsweise die Laplace- und die Fouriertransformation sind für beide Signalklassen genauso enthalten wie die Klassifizierung zeitdiskreter Signale und Systeme. Der Entwurf spezieller Systeme wie Filter, Integrationsund Differentiationsalgorithmen sowie Hilberttransformatoren ist anschaulich dargestellt.

Dem Interessenskonflikt zwischen Lehrer und Student, nämlich dem Wunsch nach theoretischer Vollständigkeit und Klarheit einerseits und nach möglichst raschem Zugang zu praktikablen Lösungen andererseits wird diesem Fachbuch dadurch Rechnung getragen, dass möglichst jedem theoretisch orientierten Kapitel Demonstrationsbeispiele in *Matlab* zugeordnet sind. Diese Beispiele finden sich auf der beigefügten CD. So kann jeder Student entweder auf der eigenen PC-Installation oder im Rechnerpool seiner Hochschule die besprochenen theoretischen Grundlagen unmittelbar erproben.

Eine so umfangreiche Zusammenstellung der wichtigsten Zusammenhänge aus der Signal- und Systemtheorie lässt sich nur mit der Unterstützung und mit der guten Zusammenarbeit eines erfahrenen Verlages umsetzen, wofür wir uns herzlich bedanken.

Helmut Roderer, Alfred Pecher

Inhaltsverzeichnis

1	\mathbf{Sign}	nale			1
	1.1	Einfül	rung		1
	1.2	Klassi	fizierung v	von Signalen	2
	1.3	Grund	loperation	en an Signalen	4
		1.3.1	Spiegelu	ng und Verschiebung von Signalen	4
		1.3.2	Zerlegun	g von Signalen	5
	1.4	Zeitdis	skrete det	erminierte Signale	6
		1.4.1	Zahlenfo	lge	6
		1.4.2	Zeitreihe	9	7
		1.4.3	Zeitdiskı	retes Signal	8
			1.4.3.1	Deltafunktion	9
			1.4.3.2	Darstellung von Zeitreihen durch zeitdiskrete Signale	10
			1.4.3.3	Deltaabtastung von zeitkontinuierlichen Signalen $.$	11
	1.5	Stocha	astische ze	eitdiskrete Signale	12
		1.5.1	Beschrei	bung von Zufallssignalen	14
		1.5.2	Element	arereignis	14
		1.5.3	Vektorie	lle Zufallssignale	14
		1.5.4	Verteilur	ngsfunktion und Dichtefunktion	15
		1.5.5	Erwartu	ngswerte	17
	1.6	Physil	kalische D	arstellung eines zeitdiskreten Signals	19
	1.7	Verarl	oeitung vo	on Zeitreihen	19
	1.8	Faltur	ıg		20

		1.8.1	Definition und Eigenschaften der Faltung	20
		1.8.2	Grafische Interpretation der Faltung	21
		1.8.3	Faltung mit Distributionen	22
		1.8.4	Diskrete Faltung	23
		1.8.5	Faltung zeitkontinuierlicher zeitbegrenzter Signale	24
		1.8.6	Zyklische diskrete Faltung	25
		1.8.7	Diskrete Faltung und z-Transformation	26
		1.8.8	Aufgaben	28
	1.9	Laplac	e- und Z-Transformation	30
		1.9.1	Laplacetransformation	30
		1.9.2	Z-Transformation	31
		1.9.3	Zusammenstellung von Transformationspaaren $\ \ \ldots \ \ \ldots$	32
2	Four	riertra	nsformation	35
	2.1	Recher	nregeln der Fouriertransformation	35
	2.2	Wichti	ge Fouriertransformationspaare	36
	2.3	Fourier	rtransformierte kausaler Signale	36
	2.4	Diskre	te Fouriertransformation	38
	2.5	Ermitt	der Fouriertransformierten	39
		2.5.1	Fouriertransformierte zeitdiskreter Signale	39
			2.5.1.1 Fouriertransformierte periodischer Signale	40
			2.5.1.2 Fouriertransformierte zeitbegrenzter Signale	40
			2.5.1.3 Fouriertransformierte sehr langer Signale	42
		2.5.2	Fouriertransformierte zeitkontinuierlicher Signale	42
			2.5.2.1 Fouriertransformierte zeitbegrenzter Signale	42
			2.5.2.2 Fouriertransformierte periodischer Signale	44
	2.6	Fourier	rreihen	44
	2.7	Die Be	ziehung der Fouriertransformation zur Laplacetransformation	45
	2.8	Parsev	alsche Theoreme	45
		2.8.1	Aperiodische zeitkontinuierliche Signale	45
		2.8.2	Aperiodische zeitdiskrete Signale	46
		2.8.3	Periodische zeitkontinuierliche Signale	47
		2.8.4	Periodische zeitdiskrete Signale	48
	2.9	Leckef	fekt bei der DFT	49
	2.10	Nichts	tationäre Signale	51
		2.10.1	Einführung	51
		2.10.2	Kurzzeitspektren	52
	2 11	Aufoal	nen	5/

3	\mathbf{App}	proxim	nation von Signalen	61
	3.1	Einfül	hrung	61
	3.2	Herlei	tung der Least-Square-Methode	61
	3.3	Appro	eximation und Interpolation	64
	3.4	Anwe	ndungsbeispiele	64
		3.4.1	Approximation mit beliebigen Funktionen	64
		3.4.2	Regressionspolynome	65
		3.4.3	Interpolation	68
		3.4.4	Verstärkungsmessung	68
	3.5	Appro	eximation mit orthogonalen Signalen	71
		3.5.1	Diskrete Fouriertransformation	73
		3.5.2	Diskrete Cosinustransformation, DCT	74
		3.5.3	Approximation mit Haarfunktionen	76
4	Sys	teme		79
	4.1	System	mbeschreibung	79
	4.2	Aufte	ilung und Zusammenfassung	80
	4.3	Klassi	ifizierung von Systemen	81
	4.4	System	msimulation	82
	4.5	Mathe	ematische Systembeschreibung	82
		4.5.1	Allgemeines	82
		4.5.2	Lineare und zeitinvariante Systeme	83
		4.5.3	Einteilung der LTI-Systeme	85
	4.6	Syster	mbeschreibung mit Testsignalen	85
		4.6.1	Gewichtsfunktion und Übertragungsfunktion	86
		4.6.2	Übertragungsstabilität	88
		4.6.3	Sprungantwort	88
		4.6.4	Frequenzgang	89
			4.6.4.1 Frequenzgang von zeitkontinuierlichen Systemen .	89
			4.6.4.2 Frequenzgang von zeitdiskreten Systemen	90
			4.6.4.3 Messung von Frequenzgängen	91
			4.6.4.4 Eigenschaften kausaler Systeme	92
			4.6.4.5 Weitere Begriffe zum Frequenzgang	92
	4.7	Verkn	üpfung von LTI-Systemen	93
		4.7.1	Reihen- oder Kaskadenschaltung, Inverses System	93
		4.7.2	Parallelschaltung, Komplementärsystem	94
		4.7.3	Kreisschaltung	95

5	Diff	erenze	engleichungssysteme	97
	5.1	Gewic	htsfunktion und Sprungantwort	98
	5.2	Z-Übe	ertragungsfunktion	99
	5.3	Freque	enzgang	102
	5.4	Übert	ragungsstabilität	103
		5.4.1	Stabilitätskriterium im z-Bereich für Differenzengleichungssysteme	104
		5.4.2	Praktische Ausführung der Stabilitätsprüfung	105
	5.5	Typen	n zeitdiskreter Systeme	105
	5.6		ben	106
6	Diff	erenti	algleichungssysteme	117
	6.1	Einfül	nrung	117
		6.1.1	$\label{linear} \mbox{Lineare Differential gleichungs systeme} \ldots \ldots \ldots \ldots$	117
		6.1.2	Nichtlineare Differentialgleichungssysteme	118
	6.2	Unters	suchung von Systemen im Zeitbereich	118
	6.3	Anwer	ndung der Laplacetransformation	119
		6.3.1	Lösung von Differentialgleichungen mit der Laplacetransformation	119
		6.3.2	Laplace-Übertragungsfunktion	120
	6.4	Freque	enzgang	120
	6.5	Sprun	gantwort	122
	6.6	Übert	ragungsstabilität	123
	6.7		rische Berechnung der Systemantwort auf beliebige Eingangs-	125
	6.8	-	e	125
				120
7	Anı		sinvariante Approximation	129
	7.1	Lösun	gsansatz	129
		7.1.1	Impulsinvariante Approximation	130
		7.1.2	Sprunginvariante Approximation	130
		7.1.3	Weitere Approximationsformen	130
	7.2	Übert	ragungsfunktion der sprunginvarianten Approximation	131
	7.3	Nume	rische Berechnung der sprunginvarianten Approximation	132
	7.4	Aufga	hen	133

8	$\mathbf{Z}\mathbf{u}\mathbf{s}$	andsd	larstellu	ng von Systemen	141
	8.1	Darste	ellung für	zeitkontinuierliche Systeme \hdots	141
		8.1.1	Ermittle	ung der Übertragungsfunktion	142
			8.1.1.1	Übertragungsfunktion für SISO-Systeme $\ \ldots \ \ldots$	143
			8.1.1.2	Übertragungsfunktionen für MIMO-Systeme $\ .\ .\ .$	144
		8.1.2		ung der Zustandsdarstellung aus der gungsfunktion	144
			8.1.2.1	Ermittlung der Regelungsnormalform	145
			8.1.2.2	Ermittlung der Beobachtungsnormalform	146
			8.1.2.3	Ermittlung der Jordanschen Normalform	146
	8.2	Zustai	ndsdarste	llung zeitdiskreter Systeme	147
		8.2.1	Ermittle	ung der Übertragungsfunktion	148
	8.3	Diskre	etisierung	der Zustandsdarstellung zeitkontinuierlicher System	e 148
	8.4	Matla	b-Funktio	onen	150
	8.5	Verkn	üpfung vo	on Systemen	150
		8.5.1	Verknüp	ofung zeitkontinuierlicher Systeme	150
			8.5.1.1	Zusammenfassung	150
			8.5.1.2	Reihenschaltung	151
			8.5.1.3	Parallelschaltung	151
			8.5.1.4	Kreisschaltung	151
		8.5.2	Verknüp	ofung zeitdiskreter Systeme	151
	8.6	Aufga	ben		152
9	Abt	astung	g und R	ekonstruktion von Signalen	157
	9.1	Abtas	tung		157
	9.2	Rekon	struktion		159
		9.2.1		Rekonstruktion	159
		9.2.2	Reale R	ekonstruktion	160
		9.2.3	Möglich	keiten zur Verbesserung der realen Rekonstruktion .	164
	9.3	Pulsar	mplituder	nmodulation	165
	9.4	Aufga	ben .		165

10 Spe	zielle z	eitdiskrete Systeme		169
10.1	Phaser	nlineare Systeme		169
	10.1.1	FIR-Systeme		169
	10.1.2	IIR-Systeme		171
	10.1.3	Nullstellenverteilung für phasenlineare FII	R-Systeme	172
		10.1.3.1 Multiplikation von Spiegel- und Amen		172
		10.1.3.2 Elementare Spiegel- und Antispie	egelpolynome	172
10.2	Revers	e FIR-Systeme		174
	10.2.1	Einführung		174
	10.2.2	Definition des reversen FIR-Systems		175
	10.2.3	Ausblicke		176
10.3	Allpäs	se und Minimalphasensysteme		176
	10.3.1	Allpässe		176
	10.3.2	Inverse oder Minimalphasensysteme $$		178
10.4	Filter			181
	10.4.1	Ideale Filter		182
	10.4.2	$ FIR-Filter \dots \dots$		184
		10.4.2.1 Ideale FIR-Tiefpässe		184
		10.4.2.2~ Realisierbare FIR-Tiefpässe		185
		10.4.2.3 FIR-Tiefpass mit Rechteckfenste	r	186
		10.4.2.4 FIR-Tiefpass mit Cosinusfenster	n	187
		10.4.2.5 FIR-Tiefpässe mit anderen Fenst	erfunktionen	188
		10.4.2.6 FIR-Hochpässe		188
		10.4.2.7 FIR-Bandpässe und FIR-Bandsp	erren	189
		10.4.2.8 Entwurf von FIR-Filtern mit der	LS-Methode	191
		10.4.2.9 Weitere Entwurfsmethoden für F	TIR-Filter	193
	10.4.3	IIR-Filter		193
		10.4.3.1 Entwurfsmethode		193
		10.4.3.2 Ausgleich der Phasenverzerrung	bei IIR-Filtern	195
	10.4.4	Aufgaben		197

10.5	Online	-Integration von Signalen	01
	10.5.1	Einschrittige Integrationsalgorithmen 2	02
	10.5.2	Mehrschrittverfahren	05
		$10.5.2.1 \ \text{Zweischrittverfahren} \ldots \ldots \qquad \qquad$	06
		10.5.2.2 Dreischrittverfahren	06
	10.5.3	Aufgaben	06
10.6	Differe	entiationsalgorithmen	08
	10.6.1	Algorithmen aus Stützpolynomen	09
	10.6.2	FIR-Differenzierer	11
10.7	Signali	interpolatoren	15
	10.7.1	Offline-Interpolation	15
		10.7.1.1 Konstruktion eines Interpolationspolynoms 2	16
		$10.7.1.2 {\rm Offline-Interpolation \ mit \ Intervall-Polynomen} \ . \ . \ . \ 2$	17
		10.7.1.3 Whittaker-Interpolation	19
	10.7.2	Online-Interpolation	20
		10.7.2.1 Lineare Interpolation $\dots \dots \dots$	22
		10.7.2.2 Filterung mit FIR-Tiefpass 2	23
	10.7.3	Aufgaben	25
10.8	Algorit	thmen zur Signalglättung	28
	10.8.1	Gleitender Mittelwert	29
	10.8.2	Glättung mit FIR-Tiefpass	29
	10.8.3	DFT-Glättung	31
	10.8.4	Nichtlineare Glättungsfilter	31
		10.8.4.1 Medianfilter	32
		10.8.4.2 Entfernung von Ausreißern 2	32
10.9	Algorit	thmen zur Hilberttransformation	33
	10.9.1	Offline-Hilbert transformation von Signalen	34
	10.9.2	Online-Hilbert transformation	37
10.10	Goert	zel-Algorithmus	37
10.11	Zufalls	szahlengeneratoren	40

		10.11.1 Generator für gleichverteilte Zufallszahlen	241
		10.11.2 Generatoren mit vorgebbaren Dichtefunktionen 2	241
		10.11.2.1 Zufallszahlengenerator für Poisson-Verteilung 2	242
		10.11.2.2 Zufallszahlen mit Binominal-Verteilung 2	242
		$10.11.2.3$ Zufallszahlengenerator für Normalverteilung $\ \ldots \ 2$	243
		10.11.3 Generator für Pseudo-Rausch-Binär-Signal 2	243
		10.11.3.1 Herleitung des PRB-Signals 2	243
		10.11.3.2 Numerische Erzeugung des PRB-Signals 2	247
		10.11.3.3 Die z-Übertragungsfunktion des PRBS-Generators 2	247
		10.11.4 Generator für gewichtete Binärfolgen	247
11	Eins	tellen von Systemen in endlicher Zeit 2	4 9
	11.1	Einstellen von zeitdiskreten Systemen in endlicher Zeit 2	249
		11.1.1 Einstellen von FIR-Systemen	249
		11.1.2 Einstellen von IIR-Systemen	250
	11.2	Einstellen von zeitkontinuierlichen Systemen in kürzester Zeit \dots 2	251
	11.3	Aufgaben	252
12	Syst	emidentifikation 2	5 5
	12.1	Schätzung von z-Übertragungsfunktionen 2	255
		12.1.1 Parameterermittlung im Zeitbereich	255
		12.1.2 Schätzung der z-Übertragungsfunktion aus Frequenzgang . 2	258
	12.2	Frequenzanalyse bei Mehrtonsignalen	259
	12.3	Rekursive Systemidentifikation	262
		12.3.1 Nichtrekursiver Algorithmus	262
		12.3.2 Rekursiyer Algorithmus	264

13	Kor	relatio	nsfunktion und spektrale Leistungsdichte	269
	13.1	Korrel	ationskoeffizient	269
	13.2	Korrel	ationsfunktionen	271
		13.2.1	Autokorrelationsfunktion	272
			13.2.1.1 Definition und Eigenschaften	272
			13.2.1.2 Interpretation	273
			13.2.1.3 Autokovarianzfunktion	274
		13.2.2	$\label{lem:Kreuzkorrelations} Kreuzkorrelations funktion \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	274
			13.2.2.1 Kreuzkovarianzfunktionen	274
		13.2.3	Rechenregeln für Korrelationsfunktionen	275
		13.2.4	Korrelationsfunktionen periodischer zeit diskreter Signale	275
		13.2.5	Numerische Berechnung von Korrelationsfunktionen $\ \ldots \ \ldots$	275
	13.3	Spektr	rale Leistungsdichte	278
		13.3.1	Definition	278
		13.3.2	Numerische Berechnung	279
	13.4	Spektr	rale Kreuzleistungsdichte	281
	13.5	Leistu	ngsdichten und Frequenzgang	282
	13.6	Weißes	s und farbiges Rauschen	282
	13.7	Aufgal	ben	283
14	Syst	emsin	nulation mit Simulink	287
	14.1	Einfüh	rrung	287
	14.2	Simula	ation zeitdiskreter Systeme	288
		14.2.1	Sinus-Cosinus-Generator	288
		14.2.2	Generator für Pseudo-Rausch-Binär-Signale (PRBS)	289
		14.2.3	IIR-Algorithmus	290
		14.2.4	Messung von Amplitude und Frequenz harmonischer Signale	293
		14.2.5	Phasenschieber	295
		14.2.6	Rekursive Parameterschätzung	297
	14.3	Simula	ation zeitkontinuierlicher Systeme	298
		14.3.1	Simulation eines Fliehkraftpendels	298
		14.3.2	Simulation einer Verladebrücke	301
		14.3.3	Simulation der Reibung	305
		14.3.4	Simulation von Flüssigkeitsbehältern	307
		14.3.5	Simulation eines Gleichstrommotors	310
		14.3.6	Mathieu-Differentialgleichung	313
		14.3.7	Simulationsbeispiel aus der Populationsdynamik	314

15	Digi	tale Regelung	317
	15.1	Vorbemerkung	317
	15.2	Einführung in die Regelungsaufgabe	317
	15.3	Grundzüge der digitalen Regelung	318
	15.4	Kompensationsregler	320
		15.4.1 Aufgabenstellung	320
		15.4.2 Ermittlung des Reglers	321
		15.4.2.1 Auswahl des Führungsverhaltens	321
		15.4.2.2 Bestimmung der Regler	321
		15.4.2.3 Störverhalten	322
		15.4.2.4 Numerische Implementierung	322
	15.5	Regelung mit endlicher Einstellzeit	323
		15.5.1 Aufgabenstellung	323
		15.5.2 Ermittlung der Tastzeit	324
		15.5.3 Auslegung des Reglers	325
		15.5.4 Störverhalten	326
		15.5.5 Simulink-Simulation	326
	15.6	Zweipunktregelung	329
		15.6.1 Zweipunktregler	329
	15.7	Zeitoptimale Regelung von Strecken	329
	15.8	Wurzelortskurve	334
	15.9	Aufgaben	335
10	T	nittlung von Signalparametern aus Messwerten	220
10			339
	10.1	Minimierung von Funktionen	339
		16.1.1 Lösungsansätze	340
	16.0	16.1.2 Simplexmethode zur Funktionsminimierung	340
	10.2	Frinkling von Signalparametern	343

17	Anh	ang 1: Darstellungen von Differenzengleichungssystemen	345
	17.1	Kanonische Darstellungen	345
		17.1.1 Erste kanonische Form	345
		17.1.2 Zweite kanonische Form	346
		17.1.3 Kaskadenform	347
	17.2	Parallelform	348
18		ang 2: Berechnung der Systemantwort mit der vichtsfunktion	349
19	Anh	ang 3: Fensterfunktionen	351
	19.1	Einführung	351
	19.2	Einige Fensterfunktionen	351
		19.2.1 Rechteckfenster	351
		19.2.2 Cosinus fenster	353
	19.3	Blackman-Fenster	354
	19.4	$\label{eq:continuous} \mbox{Dolph-Tschebycheff-Fenster} \ \ \ldots \ \ .$	354
	19.5	Kaiser-Fenster	355
20	Anh	ang 4: Transformation von Übertragungsfunktionen	357
	20.1	$\label{thm:continuous} Vereinbarungen \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	357
	20.2	Transformation der Übertragungsfunktionen	357
	20.3	Wichtige Transformationen	359
21	Anh	ang 5: Entwurf zeitkontinuierlicher Filter	363
	21.1	Festlegung des Toleranzschemas	363
	21.2	Transformation von Übertragungsfunktionen $\ \ldots \ \ldots \ \ldots \ \ldots$	364
	21.3	Ermittlung des Toleranzschemas des Normtiefpasses $\ \ \ldots \ \ \ldots \ \ .$	364
	21.4	Entwurf zeitkontinuierlicher Normtiefpässe	365
		21.4.1 Einführung	365
		21.4.2 Definition der Normtiefpässe \hdots	367
	21.5	Transformation des Normtiefpasses in das gewünschte Filter	374

22 Anhang 6: Bilineare Transformation	377
22.1 Definition der bilinearen Transformation	 377
22.2 Eigenschaften der bilinearen Transformation	 378
22.3 Bestimmung des Transformationsfaktors A	 378
22.4 Numerische Ausführung der bilinearen Transformation	 379
22.5 Transformationsmatrizen	 379
22.6 Inversion der bilinearen Transformation	 380
22.7 Beispiel	 381
23 Anhang 7: Der FFT-Algorithmus	383
24 Anhang 8: Herleitung der Spline-Interpolation	389
25 Anhang 9: Matrizen	393
25.1 Definition der Matrix	 393
25.2 Rechenregeln	 394
25.3 Transposition einer Matrix	 395
25.3.1 Definition und Rechenregeln	 395
25.3.2 Orthogonale Matrizen	 396
25.3.3 Rechnen mit Transponierten	 397
25.4 Determinante einer Matrix	 397
25.5 Rang einer Matrix	 398
25.6 Inverse einer quadratischen Matrix	 399
25.7 Normen von Vektoren und quadratischen Matrizen $$	 400
25.8 Differentiation nach Vektoren	 400
25.9 Matrizenpolynome	 401
25.10 Eigenwerte und Eigenvektoren	 402
25.11 Spezielle Matrizen	 403
26 Literaturverzeichnis	405
27 Zur beiliegenden CD	407
27.1 Matlab-Dateien	
27.2 PDF-Dateien	 408
Stichwortverzeichnis	400

1 Signale

1.1 Einführung

In allen Bereichen der Technik möchte man über den Zustand eines Vorgangs Bescheid wissen. Der Autofahrer möchte sich über seine Geschwindigkeit informieren, ein Elektriker muss die Höhe der Spannung in einem elektrischen Hausnetz kennen, und ein Bierbrauer muss die Temperaturverhältnisse in seinem Sudkessel überwachen. In allen Fällen benötigt er ein Gerät, mit dessen Hilfe er die betreffende Größe bestimmen kann. Der Bau derartiger Messgeräte ist Aufgabe der Messtechnik. Wir sind nur an den Ergebnissen und deren Weiterverarbeitung interessiert. Hierzu benötigen wir eine allgemeine, nicht von der jeweiligen Technik abhängige Ausdrucksweise.

Der Zustand einer physikalischen Größe wird Signal genannt. Die physikalische Größe selbst fungiert als Träger des Signals. Zwei oder mehr Träger können das gleiche Signal tragen. Die erste Umsetzung eines Signals nennt man Messung und das dazu nötige Gerät Messinstrument. Geräte, die weitere Übergänge eines Signals von Trägern auf andere ermöglichen, werden Umsetzer genannt. Beispielsweise wird bei einem Strommesser das Signal vom Träger Strom auf den Träger Winkel des Instrumentenzeigers umgesetzt.

Es ist auch möglich, Signale auf einem Rechner zu simulieren.

Bisher wurde unterstellt, dass ein Signal zu jedem beliebigen Zeitpunkt existiert. Man spricht in diesem Falle von einem zeitkontinuierlichen Signal. Wenn man dieses Signal nur zu bestimmten Zeiten abliest und den Messwert verkündet, so entsteht eine Zahlenfolge, die man auch als zeitdiskretes Signal auffassen kann. In der Technik wird dieses Ablesen durch einen Analog-Digital-Umsetzer bewerkstelligt. Es macht auch keine Schwierigkeiten mittels Digital-Analog-Umsetzer aus einer Zahlenfolge wieder ein zeitkontinuierliches Signal zu erzeugen.

Ist der Signalzustand konstant, so spricht man vom Gleichsignal. Im Allgemeinen verändert sich der Zustand. Dann liegt ein zeitveränderliches Signal vor.

1.2 Klassifizierung von Signalen

Signale werden unter vielfältigen Gesichtspunkten klassifiziert.

1. Determinierte und stochastische Signale

Ein determiniertes Signal kann durch eine mathematische Funktion exakt beschrieben werden. Bei stochastischen Signalen besteht eine Beschreibung mit einer Funktion prinzipiell nicht. Lediglich die Angabe von Mittelwerten, Amplitudenverteilungen oder ähnlichem ist möglich.

2. Periodische und aperiodische Signale

Ein Signal ist *periodisch*, wenn folgende Beziehung gilt:

$$x(t) = x(t \pm nt_P)$$
 Signal periode: $t_P, n \in N$. (1.1)

Gilt diese Beziehung nicht, so ist das Signal aperiodisch.

3. Signale mit und ohne beschränkte Variation

An derartige Signale sind zwei Bedingungen zu stellen. Erstens muss $|x(t)| \neq \infty$ gelten, die Signalamplitude muss also begrenzt sein. Zweitens muss bei periodischen oder abschnittsweise periodischen Signalen die Periode von null verschieden sein.

Die Feststellung, dass die Bogenlänge der Signalfunktion in einem endlichen Intervall endlich sein muss, ist gleichbedeutend. Diese Bedingung ist für praktisch relevante Signale stets erfüllt.

4. Energie- und Leistungssignale

Für ein Energiesignal x(t) muss gelten:

$$\int_{-\infty}^{\infty} x^2(t)dt < \infty. \tag{1.2}$$

Für ein *Leistungssignal* muss dagegen gelten:

$$0 < \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t)dt < \infty.$$
 (1.3)

5. Stetige und unstetige Signale

Ein Signal wird stetig genannt, wenn folgende Bedingung erfüllt ist:

$$\lim_{\Delta t \to 0} x(t \pm \Delta t) = x(t) \qquad \forall t. \tag{1.4}$$

Gilt diese Beziehung nicht, dann ist das Signal unstetig.

Das typische unstetige Signal ist der *Einheitssprung*:

$$\epsilon(t - T_0) = 0$$
 für $t < T_0$ und $\epsilon(t - T_0) = 1$ für $t > T_0$. (1.5)

Aus dem Einheitssprung wird das Rechtecksignal, auch Impulsfunktion genannt, abgeleitet:

$$rect(t - T_0, \tau) = \epsilon(t - T_0 + \frac{\tau}{2}) - \epsilon(t - T_0 - \frac{\tau}{2}). \tag{1.6}$$

Ist für ein Rechtecksignal die linke Grenze T_l und die rechte Grenze T_r gegeben, so ergibt sich:

$$\tau = T_r - T_l \quad \text{und} \quad T_0 = \frac{T_r + T_l}{2}.$$
 (1.7)

6. Gerade und ungerade Signale

Für ein gerades Signal gilt x(-t) = x(t). Für ein ungerades Signal gilt dagegen x(-t) = -x(t).

7. Signalklassifizierung nach der zeitlichen Erstreckung

Ein Signal x(t) habe den zeitlichen Definitionsbereich $-\infty \le t \le \infty$.

Aus diesem Signal werden neue Signale nach Tabelle 1.1 gebildet.

Tabelle 1.1: Begrenzte Signale

Bezeichnung	Mathematische Beschreibung
Rechtsseitiges Signal	$x_R(t) = x(t) \cdot \epsilon(t - T_0)$
Linksseitiges Signal	$x_L(t) = x(t) \cdot (1 - \epsilon(t - T_0))$
Beidseitig begrenztes Signal	$x_B(t) = x(t) \cdot rect(t - T_0, T)$

Rechtsseitige Signale heißen auch geschaltete oder kausale Signale.

Mit dem Demonstrationsprogramm *liresi* werden die verschiedenen Signalbegrenzungen demonstriert. Siehe hierzu Abbildung 1.1.

Aufgrund der technischen Begrenzungen kann man in einem Rechner grundsätzlich nur zeitbegrenzte Signale darstellen. Die oben getroffenen Einteilungen sind aber trotzdem hilfreich.

8. Klassifizierung nach der Signalamplitude

Technische Signale sind in der Amplitude stets begrenzt, es gilt also

$$x_{min} \le x(t) \le x_{max}. (1.8)$$

Kann nun die Signalamplitude innerhalb dieses Intervalls jeden beliebigen Wert annehmen, so ist das Signal wertkontinuierlich, amplitudenkontinuierlich oder analog.

Kann das Signal innerhalb des Intervalls nur endlich viele Werte annehmen, gilt also zu allen Zeiten $x(t) \in \{x_{min}, x_1, x_2, \cdots, x_n, x_{max}\}$, so ist es wertdiskret, amplitudendiskret oder digital. Kann das Signal nur zwei Amplitudenwerte annehmen, so ist es binär.

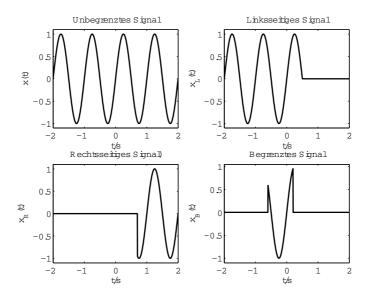


Abbildung 1.1: Linksseitige, rechtsseitige und begrenzte Signale

1.3 Grundoperationen an Signalen

1.3.1 Spiegelung und Verschiebung von Signalen

Gegeben sei ein Signal x(t). Dieses Signal kann gespiegelt und verschoben werden. Die wichtigsten Operationen sind in Tabelle 1.2 dargestellt.

Tabelle 1.2: Signaloperationen

Operation	Ergebnis
Rechtsverschiebung	$x_R(t) = x(t - T)$
Linksverschiebung	$x_L(t) = x(t+T)$
Spiegelung	$x_S(t) = x(-t)$
Spiegelung und Rechtsverschiebung	$x_{SR}(t) = x(-t+T)$
Spiegelung und Linksverschiebung	$x_{SL}(t) = x(-t - T)$

Diese Verschiebungen und Spiegelungen kann man mit dem Demonstrationsprogramm spvrsi zeigen. In Abbildung 1.2 ist ein Beispiel dargestellt.

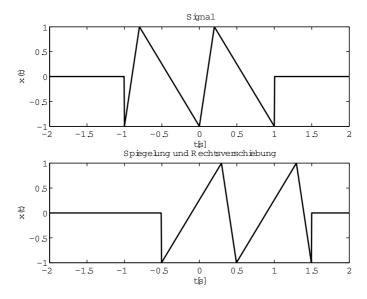


Abbildung 1.2: Verschiebung und Spiegelung

1.3.2 Zerlegung von Signalen

Jedes beliebige Signal x(t) lässt sich in die Summe aus einem geraden Signal g(t) und einem ungeraden Signal u(t) zerlegen:

$$x(t) = g(t) + u(t). (1.9)$$

Dann gilt auch mit den oben festgelegten Gesetzmöglichkeiten

$$x(-t) = g(t) - u(t). (1.10)$$

Daraus ergibt sich die Berechnungsvorschrift

$$g(t) = \frac{x(t) + x(-t)}{2}$$
 und $u(t) = \frac{x(t) - x(-t)}{2}$. (1.11)

Die Demonstration mit geugsi für ein harmonisches Signal zeigt Abbildung 1.3. Für kausale Signale gilt

$$x_k(t) = x(t) \cdot \epsilon(t)$$
 und $x_k(-t) = x(-t) \cdot \epsilon(-t)$. (1.12)

Damit wird für die Zerlegung nach Formel 1.11:

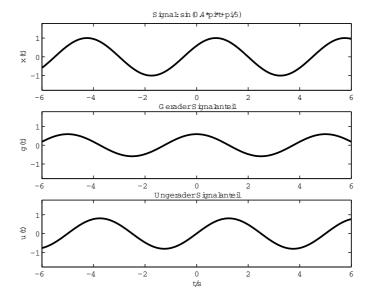


Abbildung 1.3: Zerlegung eines harmonischen Signals

Bei kausalen Signalen besteht zwischen dem geraden und dem ungeraden Signalanteil folgende Beziehung:

$$g(t) = sign(t)u(t)$$
 und $u(t) = sign(t)g(t)$. (1.14)

Die Abbildung 1.4 zeigt auch hierfür ein Beispiel. Zum Abschluss zeigt Abbildung 1.5 noch die Zerlegung eines Pulses.

1.4 Zeitdiskrete determinierte Signale

1.4.1 Zahlenfolge

Eine Abfolge einzelner Zahlen wird zusammenfassend Zahlenfolge genannt. Im Rechner werden Zahlenfolgen als Vektoren dargestellt:

$$(x) = (...3, 2.5, 8.5, ...).$$
 (1.15)

Die einzelnen Elemente der Zahlenfolge können reelle oder komplexe Zahlen sein. In der Technik hat man es zumeist mit reellen Zahlen zu tun, deren Elemente immer der Relation $x_{min} \leq x \leq x_{max}$ genügen.

Kann x in diesem Intervall nur eine endliche Anzahl von Werten annehmen, so liegt eine wertdiskrete Zahlenfolge vor. Können die Werte unendlich dicht liegen, spricht man von einer wertkontinuierlichen Zahlenfolge.

Die wichtigsten Regeln für Operationen an und mit Zahlenfolgen sind in Tabelle 1.3 dargestellt.

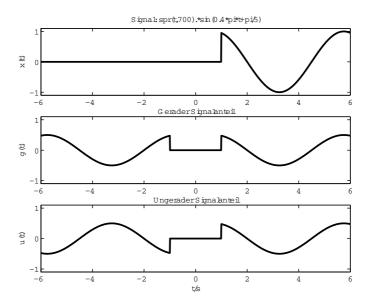


Abbildung 1.4: Zerlegungen eines kausalen Signals

Tabelle 1.3: Operationen an Zahlenfolgen

Bezeichnung	Operation	Elementoperation
Multiplikation mit einer Konstanten	(z) = k(x)	z(n) = kx(n)
Addition von Zahlenfolgen	(z) = (x) + (y)	z(n) = x(n) + y(n)
Multiplikation von Zahlenfolgen	$(z) = (x) \cdot (y)$	$z(n) = x(n) \cdot y(n)$
Inversion einer Zahlenfolge	$(z) = (x)^{-1}$	$z(n) = x(n)^{-1}$

1.4.2 Zeitreihe

Zu bestimmten Zeiten trete eine Zahl auf, wie z.B. bei der Bekanntgabe der Börsenkurse durch einen Radiosprecher. Die Gesamtheit dieser Zahlen nennt man eine Zeitreihe, die man als Zahlenfolge speichern kann.

Eine Zeitreihe ist vollständig beschrieben, wenn für jedes Element der Zeitpunkt seines Auftretens bekannt ist. Genau genommen benötigt man also zwei Zahlenfolgen, um eine Zeitreihe zu fixieren:

$$\begin{array}{rcl}
(x) & = & (\dots x_1, x_2, x_3, \dots) \\
(t) & = & (\dots t_1, t_2, t_3, \dots).
\end{array}$$
(1.16)

Dafür wird dann auch geschrieben:

$$(x) = (x(t_1), x(t_2), x(t_3), \dots). (1.17)$$

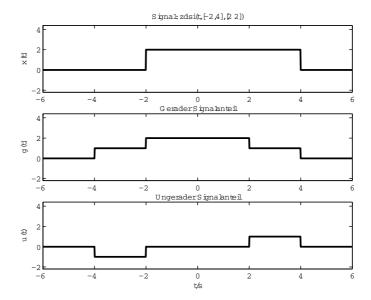


Abbildung 1.5: Zerlegungen eines Pulses

Lassen sich die Zeitpunkte, zu denen jeweils ein Element der Zeitreihe existiert, als $t_n = nT$ darstellen, spricht man von einer äquidistanten Zeitreihe. Das Element zur Zeit t = nT heißt x(nT) oder x(n). Die gesamte Zeitreihe ist

$$(x) = (x(-\infty), \dots, x(-1), x(0), x(1), x(2), \dots, x(\infty)).$$
 (1.18)

Es werden im Folgenden nur äquidistante Zeitreihen untersucht.

In manchen Fällen werden mehrere Zeitreihen zu einer Matrix zusammengefasst. Man schreibt dann beispielsweise:

$$\mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \dots & x_1(-2T) & x_1(-T) & x_1(0) & x_1(T) & x_1(2T) & \dots \\ \dots & x_2(-2T) & x_2(-T) & x_2(0) & x_2(T) & x_2(2T) & \dots \\ \dots & \vdots & \vdots & \vdots & \vdots & \vdots & \dots \\ \dots & x_n(-2T) & x_n(-T) & x_n(0) & x_n(T) & x_n(2T) & \dots \end{pmatrix}.$$
(1.19)

1.4.3 Zeitdiskretes Signal

Nun wird eine Funktion gesucht, die als mathematisches Modell für eine Zeitreihe geeignet ist. Diese Funktion muss einige spezielle Eigenschaften haben:

1. Die Funktion muss zu den Zeitpunkten nT den Wert x(n) annehmen.

- 2. Der Wert zwischen den den Zeitpunkten nT und (n+1)T ist beliebig. Man setzt ihn am besten zu null.
- 3. Die Funktion muss integrierbar sein.

Die Mathematik stellt für dieses Modell die Diracsche Deltafunktion zur Verfügung.

1.4.3.1 Deltafunktion

Die Deltafunktion, auch *Deltaimpuls* genannt, wird durch einen Grenzprozess definiert. Ausgangspunkt der Überlegungen ist die endliche Stoßfunktion:

$$I(t - nT, \tau) = 0 \quad \text{für} \quad t \le nT - \frac{\tau}{2}$$

$$= \frac{1}{\tau} \quad \text{für} \quad nT - \frac{\tau}{2} \le t \le nT + \frac{\tau}{2}$$

$$= 0 \quad \text{für} \quad t \ge nT - \frac{\tau}{2}.$$

$$(1.20)$$

Die Fläche unter dieser Funktion ist

$$\int_{-\infty}^{\infty} I(t - nT, \tau)dt = 1. \tag{1.21}$$

Nun wird eine Folge von Funktionen mit

$$I_m(t - nT, \frac{\tau}{m})$$
 für $m = 1, 2, 4, 8, 16, \cdots$ (1.22)

definiert, wobei jedes I_m nur noch halb so breit, aber doppelt so hoch wie sein Vorgänger ist. Betrachtet man für diese Funktionenfolge die Grenzfunktion

$$\delta(t - nT) = \lim_{m \to \infty} I_m(t - nT, \frac{T}{m}), \tag{1.23}$$

so erhält man die Deltafunktion in der Form

$$\delta(t - nT) = \infty$$
 für $t = nT$ und $\delta(t - nT) = 0$ für $t \neq nT$. (1.24)

Die Abbildung 1.6 zeigt den Anfang des Grenzübergangs.

Der Wert einer Zeitreihe a zur Zeit nT wird somit als Gewicht der Deltafunktion zu diesem Zeitpunkt interpretiert. Nun folgt direkt aus Formel 1.21

$$\int_{-\infty}^{\infty} \delta(t - nT)dt = 1. \tag{1.25}$$

Mit der Deltafunktion lässt sich für ein Element einer Zahlenfolge nun ein mathematisches Modell angeben:

$$x(nT) \sim x(t_n)\delta(t - t_n). \tag{1.26}$$

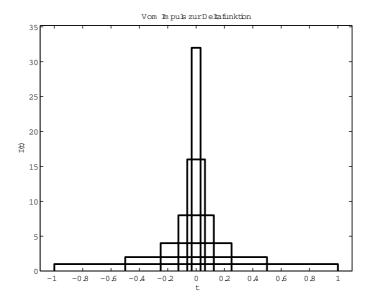


Abbildung 1.6: Grenzübergang

Die Beschränkung auf einen Zeitpunkt entspricht vollständig den vereinfachenden Bildern vom Massepunkt und von der Punktladung in der Physik.

Rechenregeln für Deltafunktionen sind in Tabelle 1.4 zusammengefasst. Aus der Ausblendeigenschaft folgt auch:

$$\begin{aligned}
\delta(t-t_1) \cdot \delta(t-t_1) &= \delta(t-t_1) \\
\delta(t-t_1) \cdot \delta(t-t_2) &= 0.
\end{aligned} (1.27)$$

1.4.3.2 Darstellung von Zeitreihen durch zeitdiskrete Signale

Wendet man Formel 1.26 auf die äquidistante Zeitreihe nach Formel 1.18 an, so erhält man ein zeitdiskretes Signal

$$x^*(t) = \sum_{n = -\infty}^{\infty} x(n)\delta(t - nT). \tag{1.28}$$

Ein Sonderfall ist der *Deltapuls*

$$D(t,T) = \sum_{n=-\infty}^{\infty} \delta(t - nT). \tag{1.29}$$

Ein weiteres wichtiges Signal ist der Deltaburst

$$D_b(t,T) = \sum_{n=-u}^{o} \delta(t - nT).$$
 (1.30)

Tabelle 1.4: Rechenregeln für Deltafunktionen

Bezeichnung	Beziehung
Linearität	$a_1\delta(t - nT) + a_2\delta(t - nT) = (a_1 + a_2)\delta(t - nT)$
Ausblendeigenschaft	$\int_{-\infty}^{\infty} x(t)\delta(t-nT)dt = \int_{-\infty}^{\infty} x(n)\delta(t-nT)dt = x(n)$
Skalierung	$\delta(\alpha(t - nT)) = \frac{1}{ \alpha }\delta(t - nT)$
Symmetrie	$\delta(-t) = \delta(t)$

1.4.3.3 Deltaabtastung von zeitkontinuierlichen Signalen

Ist x(t) ein für alle t definiertes zeitkontinuierliches Signal, so kann man auch schreiben:

$$x^*(t) = x(t) \cdot D(t, T) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT).$$
 (1.31)

Man kann sich dann ein zeitdiskretes Signal als *Deltaabtastung* eines zeitkontinuierlichen Signals entstanden denken. Daher nennt man $x^*(t)$ auch modulierter *Deltapuls*.

Einige wichtige deterministische zeitdiskrete Signale, die sich formal durch eine Deltaabtastung entwickeln lassen, sind in Tabelle 1.5 zusammengefasst. Diese Signale sind nicht realisierbar. Sie sind aber als zugeordnete Zahlenfolgen darstellbar. Mit dem Demonstrationsprogramm sige kann man determinierte zeitdiskrete Signale erzeugen. Die Abbildung 1.7 zeigt dazu ein Beispiel.

Tabelle 1.5: Deterministische zeitdiskrete Signale

Name	Beschreibung
Einheitssprung	$\epsilon^*(t) = \epsilon(t)D(t,T)$
Deltaburst	$D_b(t,T) = \sum_{n=u}^{o} \delta(t - nT)$
Sinussignal	$x^*(t) = Asin(\omega t + \varphi)D(t, T)$
Zeigersignal	$x^*(t) = Ae^{j(\omega t + \varphi)}D(t, T)$

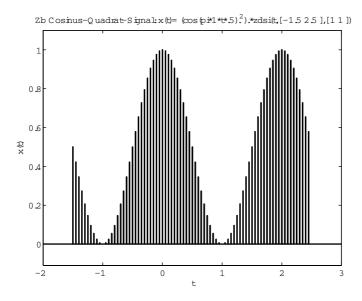


Abbildung 1.7: Beispiel eines zeitdiskreten Signals

Die Beschreibung von Zeitreihen durch zeitdiskrete Signale erlaubt die Übertragung des Energiebegriffes auf Zeitreihen. Aus der Definition für Energiesignale folgt:

$$\int_{-\infty}^{\infty} x^*(t)^2 dt = \sum_{n=-\infty}^{\infty} x(n)^2 < \infty.$$
 (1.32)

Es liegt also eine *Energiezeitreihe* vor, wenn die Summe der Quadrate ihrer Elemente endlich ist.

1.5 Stochastische zeitdiskrete Signale

Die hier vorgenommene Beschränkung auf zeitdiskrete stochastische Signale ist aus zwei Gründen vertretbar:

- 1. Viele Signale sind von ihrem Wesen her zeitdiskret, oder werden durch ihre Erfassung bereits diskretisiert.
- 2. Die Signalverarbeitung ist in jedem Falle zeitdiskret.

Definiert ist ein zeitdiskretes Signal

$$x^*(t) = \sum_{n = -\infty}^{\infty} x(n)\delta(t - nT). \tag{1.33}$$

Zeitdiskrete Signale, deren Abtastwerte x(n) sich nicht aus einem mathematischen Zusammenhang herleiten lassen, bilden eine eigene Signalklasse, die zeitdiskreten stochastischen Signale. Sie werden auch Zufallssignale genannt. Die Spezifikation zeitdiskret wird wenn möglich auch weggelassen. Der Entstehung eines Zufallssignals liegt oft ein Zufallsexperiment zugrunde.

Ein Zufallsexperiment kann zeitlich begrenzt oder auch zeitlich unbegrenzt ablaufen. Somit entstehen zeitlich begrenzte oder unbegrenzte Zufallssignale. Zeitlich unbegrenzte Zufallssignale haben unendliche Energie.

Die Werte eines Zufallsexperiments, also die einzelnen Werte eines Zufallssignals, nennt man Zufallsereignisse oder auch Elementarereignisse.

Die zwei bekanntesten Arten zur Erzeugung von Zufallsereignissen sind:

1. Das Werfen von Münzen

Eine Münze kann nach dem Fall entweder die Zahl oder das Wappen zeigen. Diesen Zufallsereignissen ordnet man die Werte 0 oder 1 zu.

2. Das Werfen eines Würfels

Jetzt sind die Zufallsereignisse die Augenzahlen {1 2 3 4 5 6}.

Die Erzeugung dieser Zufallssignale lässt sich von Hand nur mit Mühe bewerkstelligen. Will man diesen Vorgang mit einem Rechner nachbilden, so steht man vor einem Problem. Man kann jetzt Zufallsereignisse nur durch ein Programm bilden. Programme können aber nur determinierte Zahlenfolgen generieren. Man suchte daher nach Algorithmen, die sogenannte Pseudozufallszahlen erzeugen. Es gibt viele derartige Zufallszahlengeneratoren.

1. Verallgemeinerter Würfel

Es lässt sich ein Zufallszahlengenerator als Verallgemeinerung des Würfels erstellen. Während der Spielwürfel sechs Seiten hat, kann man Würfel mit beliebiger Seitenzahl programmieren.

2. Gleichverteiltes Zufallssignal

Hierbei handelt es sich um einen Generator für reelle Zahlen im Bereich $0 \le x \le 1$.

3. Normalverteiltes Zufallsignal

Das ist ein Zufallssignal, das man sich beispielsweise als Deltaabtastung der Rauschspannung einer Antenne vorstellen kann.

In einem späteren Kapitel werden einige Algorithmen für die Generierung von Pseudozufallsfolgen näher betrachtet.